一次函数的定义和判别
2021-03-12 15:54:30文/陈宇航一、一次函数的定义和判别
1、一次函数
一般地,形如$y=kx+b$($k$,$b$是常数,$k≠0$)的函数,叫做一次函数。当$b=0$时,$y=kx+b$即$y=kx$,所以说正比例函数是一种特殊的一次函数。
2、一次函数的判别
要判断一个函数是否为一次函数,就要先将式子进行变形,看它能否化成$y=kx+b$的形式,即$x$的指数为1,$k≠0$,$b$为任意常数。若符合上述条件,且$b≠0$,则这个函数为一次函数;若符合上述条件,且$b=0$,则这个函数既是一次函数,又是正比例函数。
3、一次函数的图象及性质
一次函数$y=kx +b$$(k≠0)$的图象可以由直线$y=kx$平移$|b|$个单位长度得到(当$b>0$时,向上平移;当$b<0$时,向下平移)。一次函数$y=kx+b$$(k≠0)$的图象也是一条直线,我们称它为直线$y=kx+b$。直线$y=kx +b$$(k≠0)$与y轴交于点$(0,b)$,与$x$轴交于点$\left(-\frac{b}{k},0\right)$。其中$b$叫做直线$y=kx+b$在$y$轴上的截距。
4、一次函数的图象与性质的应用
(1)从函数图象的形状可以判断函数的类型。对于实际问题中的正比例函数和一次函数的图象,大多为线段或射线,因为在实际问题中,自变量的取值范围是有一定限制的,即自变量的取值范围必须使实际问题有意义。
(2)一次函数$y=kx +b$$(k≠0)$的性质主要是指函数的增减性,即$y$随$x$的变化情况,它只与$k$的符号有关,与$b$的符号无关。
即$k>0$,$y$随$x$的增大而增大;
$k<0$,$y$随$x$的增大而减小。
反之,若$y$随$x$的增大而增大,则必有$k>0$;若$y$随$x$的增大而减小,则必有$k<0$。
5、待定系数法
先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法。
二、一次函数的相关例题
下列函数:① $y=2x$,② $y=\frac{x}{2}$,③$y=2x+1$,④ $y=x^2+1$,其中一次函数的个数是___
A.4 B.3 C.2 D.1
答案:B
解析:由一次函数的概念,知①②既是正比例函数,也是一次函数,③是一次函数,④不是一次函数。故选B。
- 同类项的定义和合并同类项
一、同类项的定义和合并同类项1、同类项所含字母相同...
2021-03-12 - 图形的剪拼的定义和意义
一、图形的剪拼的定义和意义1、图形的剪拼把一个几何...
2021-03-12 - 完全平方公式的定义和常见变形
一、完全平方公式的定义和常见变形1、完全平方公式$...
2021-03-12 - 完全平方式的定义和特点
一、完全平方式的定义和特点1、完全平方公式$(a+...
2021-03-12 - 完全平方数的定义和性质
一、完全平方数的定义和性质1、完全平方数完全平方即...
2021-03-12 - 位似变换的坐标和性质
一、位似变换的坐标和性质1、位似图形两个多边形不仅...
2021-03-12 - 无理方程的定义和一般解法
一、无理方程的定义和一般解法1、无理方程无理方程就...
2021-03-12 - 有理方程和整式方程的定义
一、有理方程和整式方程的定义1、有理方程分式方程和...
2021-03-12 - 无理数的概念和常见的无理数
一、无理数的概念和常见的无理数1、无理数的概念无线...
2021-03-12 - 弦切角定理和圆周角定理
一、弦切角定理和圆周角定理1、弦切角顶点在圆上,一...
2021-03-12 - 线段垂直平分线的性质和判定
一、线段垂直平分线的性质和判定1、线段的垂直平分线...
2021-03-12 - 线段的和差及性质
一、线段的和差及性质1、尺规作图:线段的和用直尺画...
2021-03-12 - 线段的性质和两点间的距离
一、线段的性质和两点间的距离1、两点间的距离连接两...
2021-03-12 - 相反数的概念和几何意义
一、相反数的概念和几何意义1、相反数的概念像2和-...
2021-03-12 - 相交两圆的性质和概念
一、相交两圆的性质和概念设两圆的半径分别为$r_1...
2021-03-12
点击查看 数学知识点 更多内容