高三网 试题库 作文库 大学库 专业库

当前位置: 高三网 > 数学知识点 > 正文

线性相关的三种判断方法

2023-01-12 11:25:57文/赵春雨

令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关;若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。

线性相关的三种判断方法

如何判断向量组是否线性相关

(1)当向量组所含向量的个数与向量的维数相等时,该向量组构成的行列式不为零的充分必要条件是该向量组线性无关;

(2)当向量组所含向量的个数多于向量的维数时,该向量组一定线性相关;

(3)通过向量组的正交性研究向量组的相关性;

(4)通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关;

(5)通过向量组的秩研究向量组的相关性。若向量组的秩等于向量的个数,则该向量组是线性无关的;若向量组的秩小于向量的个数,则该向量组是线性相关的。

如何判断两个向量线性无关

两个向量构成的向量组线性无关的充分必要条件是:对应分量不成比例,即一个向量不是另一个向量的倍数。

如果把这两个变量分别作为点的横坐标与纵坐标,其图象是平面上的一条直线,则这两个变量之间的关系就是线性关系。即如果可以用一个二元一次方程来表达两个变量之间关系的话,这两个变量之间的关系称为线性关系,因而,二元一次方程也称为线性方程。

推而广之,含有n个变量的一次方程,也称为n元线性方程,不过这已经与直线没有什么关系了。

推荐阅读