高三网 试题库 作文库 大学库 专业库

当前位置: 高三网 > 数学知识点 > 正文

高考数学知识点归纳 数学常见考点

2022-10-01 13:20:39文/赵春雨

或、且、非三个逻辑联结词,对应着集合运算中的并、交、补,因此,常常借助集合的并、交、补的意义来解答由或、且、非三个联结词构成的命题问题。

高考数学知识点归纳 数学常见知识点

高考数学知识点归纳

高考数学知识点:动点的轨迹方程动点的轨迹方程:

在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。

求动点的轨迹方程的基本方法:

直接法、定义法、相关点法、参数法、交轨法等。

1、直接法:

如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;

用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。

2、定义法:

利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。定义法的关键是条件的转化??转化成某一基本轨迹的定义条件;

3、相关点法:

动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。

4、参数法:

求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。要特别注意消参前后保持范围的等价性。多参问题中,根据方程的观点,引入n个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。

5、交轨法:

求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。可以说是参数法的一种变种。用交轨法求交点的轨迹方程时,不一定非要求出交点坐标,只要能消去参数,得到交点的两个坐标间的关系即可。交轨法实际上是参数法中的一种特殊情况。

求轨迹方程的步骤:

(l)建系,设点建立适当的坐标系,设曲线上任意一点的坐标为M(x,y);

(2)写集合写出符合条件P的点M的集合P(M);

(3)列式用坐标表示P(M),列出方程f(x,y)=0;

(4)化简化方程f(x,y)=0为最简形式;

(5)证明证明以化简后的方程的解为坐标的点都是曲线上的点。

高考数学有哪些常考知识点

一、间断点求极限

1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;

2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限 存在;

3、渐近线,(垂直、水平或斜渐近线);

4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在。

二、下面我们重点讲一下数列极限的典型方法。

(一)重要题型及点拨

1、求数列极限

求数列极限可以归纳为以下三种形式。

2、抽象数列求极限

这类题一般以选择题的形式出现, 因此可以通过举反例来排除。 此外,也可以按照定义、基本性质及运算法则直接验证。

(二)求具体数列的极限,可以参考以下几种方法:

a、利用单调有界必收敛准则求数列极限。

首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值。

b、利用函数极限求数列极限

如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解。

(三)求项和或项积数列的极限,主要有以下几种方法:

a、利用特殊级数求和法

如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果。

b、利用幂级数求和法

若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值。

c、利用定积分定义求极限

若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限。

d、利用夹逼定理求极限

若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解。

e、求项数列的积的极限

一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算。

推荐阅读

点击查看 数学知识点 更多内容