高中数学函数知识点总结
2016-09-21 16:36:37文/刘楠一般的,在一个变化过程中,假设有两个变量x、y,如果对于任意一个x都有唯一确定的一个y和它对应,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y的取值范围叫做函数的值域。下面是高三网小编总结的高中数学函数知识点,供参考。
高中数学函数知识点总结
1.函数的奇偶性
(1)若f(x)是偶函数,那么f(x)=f(-x);
(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);
(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;
(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;
2.复合函数
(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
(2)复合函数的单调性由“同增异减”判定;
3.函数图像(或方程曲线的对称性)
(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;
(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;
(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;
点击查看:高中数学知识点总结
4.函数的周期性
(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;
(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;
(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;
(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;
(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;
(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;
5.方程k=f(x)有解k∈D(D为f(x)的值域);
6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7.(1)(a>0,a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符号由口诀“同正异负”记忆;
(4)alogaN=N(a>0,a≠1,N>0);
8.判断对应是否为映射时,抓住两点:
(1)A中元素必须都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。
10.对于反函数,应掌握以下一些结论:
(1)定义域上的单调函数必有反函数;
(2)奇函数的反函数也是奇函数;
(3)定义域为非单元素集的偶函数不存在反函数;
(4)周期函数不存在反函数;
(5)互为反函数的两个函数具有相同的单调性;
(6)y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;
12.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题;
13.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解;
以上就是高三网小编整理的高中数学函数知识点总结,希望对同学们有帮助。
高三网小编推荐你继续浏览:高考数学计算题应该怎么做?
高考数学选择题应该怎么做?
高中数学有什么提分技巧
数学一次函数应用题应该怎么做?
高三文科数学第一轮复习策略
高考状元怎样复习数学?
2017高三数学一轮复习计划
高考数学压轴题破解方法
如何才能有效的学习数学呢?
- 求函数单调性的一般步骤
导数法:首先对函数进行求导,令导函数等于零,得X值...
2021-02-23 - 怎样判断一个函数是复合函数
判断一个函数是不是复合函数,可以看其中一个函数的值...
2021-02-22 - ln与e函数的运算法则
运算法则:ln(MN)=lnM+lnN,ln(M/...
2021-02-19 - 求函数拐点的一般步骤
y=f(x)的拐点:求f''(x);令f''(x)...
2021-02-18 - 高中函数怎么学 最简单方法
函数其实在初中的时候就已经讲过了,当然那时候是最简...
2021-02-10 - 函数有界和收敛的区别
收敛函数的x值有界,y值无界限。有界函数的y值有界...
2021-02-09 - 同一函数的判断方法
看定义域是否相同,如果定义域相同,函数式形式相同,...
2021-02-08 - Tanx和secx的关系
tanx的导数等于(secx)^2,tanx的二次...
2021-01-18 - 函数对称轴怎么求
函数对称轴:1.f(x)满足f(a+x)=f(a-...
2021-01-17 - 什么是初等函数和非初等函数
初等函数是由幂函数、指数函数、对数函数、三角函数、...
2021-01-13 - sinx的平方是周期函数么
是周期函数,sin²x=(1-cos2x)/2,是...
2021-01-13 - 怎么判断周期函数
判断f(x)的定义域是否有界;根据定义讨论函数的周...
2021-01-12 - tan(arctanx)等于多少
因为arctan x的定义域是全体实数,tan u...
2021-01-10 - 函数有界性的定义
定义:若存在两个常数m和M,使函数y=f(x),x...
2021-01-09 - 反正切函数的导数
正切函数的求导(acrtanx)'=1/(1+x²...
2021-01-06
点击查看 高中数学知识点 更多内容