高三网 试题库 作文库 大学库 专业库

当前位置: 高三网 > 高中数学知识点 > 正文

证明线面垂直的方法有哪些

2020-10-16 09:25:14文/叶丹

直线与平面垂直定义:如果一条直线与平面内任意一条直线都垂直,那么这条直线与这个平面垂直。是将“三维”问题转化为“二维”解决是一种重要的立体几何数学思想方法。

证明线面垂直的方法有哪些

证明线面垂直的方法

1、线面垂直的判定定理

直线与平面内的两相交直线垂直

2、面面垂直的性质

若两平面垂直则在一面内垂直于交线的直线必垂直于另一平面

3、线面垂直的性质

两平行线中有一条与平面垂直,则另一条也与平面垂直

4、面面平行的性质

一线垂直于二平行平面之一,则必垂直于另一平面

5、定义法

直线与平面内任一直线垂直

线面垂直证法

由性质定理2可知,过空间内一点(无论是否在已知平面上),有且只有一条直线与平面垂直。下面就讨论如何作出这条唯一的直线。

点在平面外

设点P是平面α外的任意一点,求作一条直线PQ使PQ⊥α。

作法:

①在α内任意作一条直线l,并过P作PA⊥l,垂足为A。

此时,若PA⊥α,则所需PQ已作出;若不是这样,

②在α内过A作m⊥l。

③过P作PQ⊥m,垂足为Q,则PQ是所求直线。

证明:

由作法可知,l⊥PA,l⊥QA

∵PA∩QA=A

∴l⊥平面PQA

∴PQ⊥l

又∵PQ⊥m,且m∩l=A,m⊂α,l⊂α

∴PQ⊥α

点在平面内

设点P是平面α内的任意一点,求作一条直线PQ使PQ⊥α。

作法:

①过平面外一点A作AB⊥α,作法见上。

②过P作PQ∥AB,PQ是所求直线。

证明:

由性质定理3可知,若作出了AB⊥α,PQ∥AB,那么PQ⊥α。

推荐阅读

点击查看 高中数学知识点 更多内容