高三网 试题库 作文库 大学库 专业库

当前位置: 高三网 > 数学知识点 > 正文

圆锥曲线的神级结论 有哪些结论

2021-09-23 15:31:54文/李文源

圆锥曲线,是由一平面截二次锥面得到的曲线。圆锥曲线包括椭圆(圆为椭圆的特例)、抛物线、双曲线。下面是关于圆锥曲线的神级结论的相关内容,来看一下吧!

圆锥曲线的神级结论

圆锥曲线的神级结论是什么

1、当平面与二次锥面的母线平行,且不过圆锥顶点,结果为抛物线。

2、当平面与二次锥面的母线平行,且过圆锥顶点,结果退化为一条直线。

3、当平面只与二次锥面一侧相交,且不过圆锥顶点,结果为椭圆。

4、当平面只与二次锥面一侧相交,且不过圆锥顶点,并与圆锥的对称轴垂直,结果为圆。

5、当平面与二次锥面两侧都相交,且不过圆锥顶点,结果为双曲线(每一支为此二次锥面中的一个圆锥面与平面的交线)。

6、当平面与二次锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。

圆锥曲线

圆锥曲线,是由一平面截二次锥面得到的曲线。圆锥曲线包括椭圆(圆为椭圆的特例)、抛物线、双曲线。起源于2000多年前的古希腊数学家最先开始研究圆锥曲线。

圆锥曲线(二次曲线)的(不完整)统一定义:到平面内一定点的距离r与到定直线的距离d之比是常数e=r/d的点的轨迹叫做圆锥曲线。其中当e>1时为双曲线,当e=1时为抛物线,当0<e<1时为椭圆。

定点叫做该圆锥曲线的焦点,定直线叫做(该焦点相应的)准线,e叫做离心率。

推荐阅读

点击查看 数学知识点 更多内容