高三网 试题库 作文库 大学库 专业库

当前位置: 高三网 > 高中数学公式 > 正文

高三数学公式总结:三角函数

2016-11-01 11:41:41文/刘楠

作为高三学生熟记数学的每个公式,对你的考试是有利的。进入高三,我们必须对自己所学的各科知识的有个全面的把握。高三数学复习从基础复习到慢慢深入,高三学生学习高中数学,要掌握好高三数学公式,下面是高三网小编整理的高三数学公式总结:三角函数,供大家学习参考!

高三数学公式总结:三角函数 超级全

高中数学必修一知识结构图如何从数学学渣逆袭成数学学霸?学霸支招:如何提高高三数学成绩高中文科数学公式大全

高三数学三角函数公式

sinα=∠α的对边/斜边

cosα=∠α的邻边/斜边

tanα=∠α的对边/∠α的邻边

cotα=∠α的邻边/∠α的对边

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA²-SinA²=1-2SinA²=2CosA²-1

tan2A=(2tanA)/(1-tanA²)

(注:SinA²是sinA的平方sin2(A))

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a=tana·tan(π/3+a)·tan(π/3-a)

三倍角公式推导

sin3a=sin(2a+a)=sin2acosa+cos2asina

三角函数辅助角公式

Asinα+Bcosα=(A²+B²)’(1/2)sin(α+t),其中

sint=B/(A²+B²)’(1/2)

cost=A/(A²+B²)’(1/2)

tant=B/A

Asinα+Bcosα=(A²+B²)’(1/2)cos(α-t),tant=A/B

降幂公式

sin²(α)=(1-cos(2α))/2=versin(2α)/2

cos²(α)=(1+cos(2α))/2=covers(2α)/2

tan²(α)=(1-cos(2α))/(1+cos(2α))

三角函数推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos²α

1-cos2α=2sin²α

1+sinα=(sinα/2+cosα/2)²=2sina(1-sin²a)+(1-2sin²a)sina=3sina-4sin³a

cos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos²a-1)cosa-2(1-sin²a)cosa=4cos³a-3cosa

sin3a=3sina-4sin³a=4sina(3/4-sin²a)=4sina[(√3/2)²-sin²a]=4sina(sin²60°-sin²a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)

cos3a=4cos³a-3cosa=4cosa(cos²a-3/4)=4cosa[cos²a-(√3/2)²]=4cosa(cos²a-cos²30°)=4cosa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)

上述两式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

三角函数半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin²(a/2)=(1-cos(a))/2

cos²(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

三角函数三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

三角函数两角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

三角函数和差化积

sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]

sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]

cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]

cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

三角函数积化和差

sinαsinβ=[cos(α-β)-cos(α+β)]/2

cosαcosβ=[cos(α+β)+cos(α-β)]/2

sinαcosβ=[sin(α+β)+sin(α-β)]/2

cosαsinβ=[sin(α+β)-sin(α-β)]/2

三角函数诱导公式

sin(-α)=-sinα

cos(-α)=cosα

tan(—a)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

sin(π-α)=sinα

cos(π-α)=-cosα

sin(π+α)=-sinα

cos(π+α)=-cosα

tanA=sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

诱导公式记背诀窍:奇变偶不变,符号看象限

万能公式

sinα=2tan(α/2)/[1+tan’(α/2)]

cosα=[1-tan’(α/2)]/1+tan’(α/2)]

tanα=2tan(α/2)/[1-tan’(α/2)]

其它公式

(1)(sinα)²+(cosα)²=1

(2)1+(tanα)²=(secα)²

(3)1+(cotα)²=(cscα)²

证明下面两式,只需将一式,左右同除(sinα)²,第二个除(cosα)²即可

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

证:A+B=π-Ctan(A+B)=tan(π-C)

(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得tanA+tanB+tanC=tanAtanBtanC

得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立

由tanA+tanB+tanC=tanAtanBtanC可得出以下结论

(5)cotAcotB+cotAcotC+cotBcotC=1

(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)

(7)(cosA)²+(cosB)²+(cosC)²=1-2cosAcosBcosC

(8)(sinA)²+(sinB)²+(sinC)²=2+2cosAcosBcosC

(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0以及

sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

以上就是高三网小编整理的高三数学公式总结:三角函数,更多高三数学三角函数公式请关注高三网。

高三网小编推荐你继续浏览:高一数学知识点框架图
高一数学必修二知识点总结 重点结论汇总
高中数学必修三知识点总结
一个理科学霸的表白:数学公式的超酷表白
高一数学必修一知识点总结
高中数学必修二知识结构图

推荐阅读

点击查看 高中数学公式 更多内容