ab=0矩阵能推出什么
2023-06-29 13:09:40文/张哲ab=0矩阵能推出r(A)+r(B)<=n。证明:如果AB=0,那么B的每个列都是齐次方程组AX=0的解。设r(A)=r,那么方程组AX=0最多有n-r个线性无关的解,所以:r(B)<=n-r=n-r(A)。因此,r(A)+r(B)<=n。
ab=0矩阵能推出什么
ab=0矩阵能推出r(A)+r(B)<=n。
证明:如果AB=0,那么B的每个列都是齐次方程组AX=0的解。设r(A)=r,那么方程组AX=0最多有n-r个线性无关的解,所以:r(B)<=n-r=n-r(A)。因此,r(A)+r(B)<=n。称为n元齐次线性方程组。
设其系数矩阵为A,未知项为X,则其矩阵形式为AX=0。若设其系数矩阵经过初等行变换所化到的行阶梯形矩阵的非零行行数为r,则它的方程组的解只有以下两种类型:当r=n时,原方程组仅有零解;当r<n时,有无穷多个解(从而有非零解)。
什么是矩阵
矩阵是在高等代数学中多见的一种专用工具,主要是用以一些数据分析和运用数学学科中,而矩阵也在物理中有一定的使用,矩阵在电路学、电子光学和结构力学等量子物理学里都是有使用的。而在计算机科学中,我们在普遍的做一些三维动画的过程中也是需要使用矩阵的。
矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。
矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法.
- 矩阵对角化的条件和步骤
矩阵对角化的步骤:第一步是求出矩阵的特征值和特征向...
2023-06-28 - 可逆矩阵一定是方阵吗
可逆矩阵一定是方阵。可逆矩阵最终一定可以化为E的形...
2023-06-28 - 两矩阵相似的条件
两个矩阵相似的充分必要条件是:两者的秩相等。两者的...
2023-06-28 - 3×3三阶矩阵求秩
3×3三阶矩阵求秩时首先,需要将矩阵转化为行简化阶...
2023-06-28 - 可逆矩阵的行列式
矩阵逆矩阵的行列式等于原矩阵行列式的倒数。证明如下...
2023-06-25 - 矩阵a^2=a说明什么
矩阵a^2=a说明a的特征值只能是0或1,且有a(...
2023-05-18 - 矩阵的行秩和列秩一定相等吗
矩阵的行秩和列秩,二者一定是相等的。行秩和列秩通过...
2023-05-16 - 矩阵的乘法运算法则
矩阵的乘法运算法则有:乘法结合律:(AB)C=A(...
2023-05-16 - 矩阵某一行乘k改变吗
矩阵某一行乘k时,只要k≠1,则矩阵会发生改变。在...
2023-05-15 - 副对角线矩阵的逆矩阵公式
副对角线矩阵的逆矩阵公式:AA-1=A-1A=E。...
2023-05-11 - 3x4矩阵维数是3还是4
3x4矩阵维数不是3也不是4,而是2。它只有行和列...
2023-05-10 - 单位矩阵的性质
单位矩阵的性质是:单位矩阵的特征值皆为1,任何向量...
2023-05-10 - 矩阵某一行乘k改变吗
矩阵某一行乘k时只要k≠1,则矩阵必然改变。两个矩...
2023-04-16 - 矩阵的行秩和列秩一定相等吗
一个矩阵中行秩与列秩是相等的,矩阵的行秩与列秩统称...
2023-04-10 - 矩阵的乘法运算法则
矩阵的乘法运算法则有:乘法结合律:(AB)C=A(...
2023-04-10
点击查看 高中数学 更多内容