高三网 试题库 作文库 大学库 专业库

当前位置: 高三网 > 高中数学 > 正文

高数上费马定理是什么

2023-04-16 14:14:14文/张哲

费马定理又被称为“费马最后的定理”,由法国数学家费马提出。它断言当整数n >2时,关于x、y、 z的方程 x^n + y^n = z^n 没有正整数解,被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1993年被英国数学家安德鲁·怀尔斯证明。

高数上费马定理是什么

1费马定理的证明过程

费马定理即费马大定理。费马提出当n>2时,方程x^n+y^n=z^n无整数解。公元17世纪,法国数学家皮耶·德·费马提出费马猜想,但没有给出证明。 1678年G·W莱布尼兹证明了n=4时定理成立。1770年C·欧拉证明了n=3和4的情形,P·G狄利克雷和G·拉梅分别证明了n=5和7的情形。

1884年E·E库默尔创立了理想数,从而证明了当n是介于2与100之间的奇数p(除去(p=37,59和67)时,定理成立。 1995年,安德鲁·怀尔斯等人将费马猜想证明过程发表在《数学年刊》,成功证明了这一定理。

费马大定理表述虽简单,但它的证明耗费了数代人的努力,许多数学家在证明过程中发现了许多新的数学理论,拓展了新的数学方法,证明费马大定理的过程可以算得上是一部数学史。

2费马定理为什么重要

费马定理激发了几个世纪中的数学思维和发现。猜想成为定理,几代顶尖的数学家付出了艰辛努力。

18世纪的数学家欧拉,就n等于3的情况下进行了证明。

德国数学家厄恩斯特E.库默尔,就小于100的数中,除了37、59、67以外的其他所有数,证明了这个定理。

今天的计算机证明指出,对于前面的400万个自然数来说定理是成立的。

20世纪50年代,谷山丰提出了与椭圆曲线和它们在双曲平面内的构造有关的猜想。20世纪80年代。格哈德.弗雷指出,如果谷山猜想对于某一类的椭圆曲线(称作半稳定的),来说是对的,则费马定理可以证明。肯尼思A.李贝特证明了弗雷的命题

1995年问题得到彻底证明。由此可见,解决费马大定理的过程,极大地丰富了数学的思想、方法。

《高数上费马定理是什么》
立即下载

测一测你能上的大学

新疆
理科
文科
    
测一测能上的大学
推荐阅读

点击查看 高中数学 更多内容

验证码错误!

测一测你能上的大学

新疆
理科
文科
    
测一测我能上的大学

选择省份

北京
天津
河北
山西
内蒙古
辽宁
吉林
黑龙江
上海
江苏
浙江
安徽
福建
江西
山东
河南
湖北
湖南
广东
广西
海南
重庆
四川
贵州
云南
陕西
甘肃
青海
宁夏
新疆