高三网 试题库 作文库 大学库 专业库

当前位置: 高三网 > 高中数学知识点 > 正文

arcsinx的导数

2023-01-10 16:37:19文/刘冬晴

arcsinx的导数(arcsinx)'=1/根号(1-x^2)。设y=arcsinx∈[-π/2,π/2],则x=siny ,1=(cosy)*y' ,y'=1/cosy=1/根号(1-sin^2y)=1/根号(1-x^2)。

arcsinx的导数

1arcsinx的导数解答过程

1、反函数的导数与原函数的导数关系是设原函数为y=fx,则其反函数在y点的导数与f'x互为倒数,即原函数,前提要f'x存在且不为0,如果函数x=fyx=fy在区间IyIy内单调、可导且f′y≠0f′y≠0,那么它的反函数y=f1xy=f1x在区间Ix=x|x=fy,y∈IyIx=x|x=fy,y∈Iy内也可导。

2、arcsinx表示sinx表示一个数字,其中的X是一个角度。arcsinx表示一个角度,其中的x是一个数字,-1<=x<=1。arcsinX表示的角度就是指,正弦值为X的那个角,arcsinx是sinx的反函数,如果sinx=y,那么arcsiny=x因为sin是周期函数。

3、不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。可导的函数一定连续;不连续的函数一定不可导。

2隐函数导数的求解

方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;

方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);

方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;

方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

《arcsinx的导数》
立即下载

测一测你能上的大学

新疆
理科
文科
    
测一测能上的大学
推荐阅读

点击查看 高中数学知识点 更多内容

验证码错误!

测一测你能上的大学

新疆
理科
文科
    
测一测我能上的大学

选择省份

北京
天津
河北
山西
内蒙古
辽宁
吉林
黑龙江
上海
江苏
浙江
安徽
福建
江西
山东
河南
湖北
湖南
广东
广西
海南
重庆
四川
贵州
云南
陕西
甘肃
青海
宁夏
新疆