高三网 试题库 作文库 大学库 专业库

当前位置: 高三网 > 高中数学 > 正文

导数不存在的三种情况

2022-01-26 11:00:57文/丁雪竹

导数不存在的情况没有三种,只有两种,分别是函数在该点不连续,且该点是函数的第二类间断点。函数在该点连续,但在该点的左右导数不相等。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。

导数不存在的三种情况

导数不存在的情况

1、函数在该点有断点的时候,函数不连续就无法求导。

若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

2、函数在该点连续,但在该点的左右导数不相等。如Y=|X|,在x=0处连续,在x处的左导数为-1,右导数为1,但左右不相等,则函数在x=0不可导。

导数是什么意思

导数,也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。

不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。

推荐阅读

点击查看 高中数学 更多内容