高三网 试题库 作文库 大学库 专业库

当前位置: 高三网 > 高中数学公式 > 正文

等差数列求和公式及答题技巧

2021-03-15 11:30:11文/李傲

遇到等差数列求和的题目时,要注意观察数列的特点和规律,找到合适的解题方法。下面是小编整理的相关公式和答题技巧,一起来看!

等差数列求和公式及答题技巧

等差数列求和公式

1、等差数列基本公式:末项=首项+(项数-1)*公差项数=(末项-首项)÷公差+1首项=末项-(项数-1)*公差和=(首项+末项)*项数÷2末项:最后一位数首项:第一位数项数:一共有几位数和:求一共数的总和。

2、Sn=na(n+1)/2n为奇数

sn=n/2(An/2+An/2+1)n为偶数

3、等差数列如果有奇数项,那么和就等于中间一项乘以项数,如果有偶数项,和就等于中间两项和乘以项数的一半,这就是中项求和。

4、公差为d的等差数列{an},当n为奇数是时,等差中项为一项,即等差中项等于首尾两项和的二分之一,也等于总和Sn除以项数n。将求和公式代入即可。当n为偶数时,等差中项为中间两项,这两项的和等于首尾两项和,也等于二倍的总和除以项数n。

等差数列求和解题技巧

一.用倒序相加法求数列的前n项和

如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的`和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。

例题1:设等差数列{an},公差为d,求证:{an}的前n项和Sn=n(a1+an)/2

解:Sn=a1+a2+a3+...+an①

倒序得:Sn=an+an-1+an-2+…+a1 ②

①+②得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)

又∵a1+an=a2+an-1=a3+an-2=…=an+a1

∴2Sn=n(a2+an) Sn=n(a1+an)/2

二.用公式法求数列的前n项和

对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

三.用裂项相消法求数列的前n项和

裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。

四.用错位相减法求数列的前n项和

错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。

五.用迭加法求数列的前n项和

迭加法主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an ,从而求出Sn。

六.用分组求和法求数列的前n项和

分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。

七.用构造法求数列的前n项和

构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。

推荐阅读

点击查看 高中数学公式 更多内容