高三网 试题库 作文库 大学库 专业库

当前位置: 高三网 > 高中数学知识点 > 正文

线与平面平行的判定定理

2020-10-14 14:56:13文/徐克达

线与平面平行的判定定理为:利用定义:证明直线与平面无公共点;利用判定定理:从直线与直线平行得到直线与平面平行;利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个平面。

线与平面平行的判定定理

线面平行判断定理

平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

已知:a∥b,a⊄α,b⊂α,求证:a∥α反证法证明:假设a与α不平行,则它们相交,设交点为A,那么A∈α

∵a∥b,∴A不在b上

在α内过A作c∥b,则a∩c=A

又∵a∥b,b∥c,∴a∥c,与a∩c=A矛盾。

∴假设不成立,a∥α

向量法证明:设a的方向向量为a,b的方向向量为b,面α的法向量为p。∵b⊂α

∴b⊥p,即p·b=0

∵a∥b,由共线向量基本定理可知存在一实数k使得a=kb

那么p·a=p·kb=kp·b=0

即a⊥p

∴a∥α

平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。

已知:a⊥b,b⊥α,且a不在α上。求证:a∥α证明:设a与b的垂足为A,b与α的垂足为B。

假设a与α不平行,那么它们相交,设a∩α=C,连接BC由于不在直线上的三个点确定一个平面,因此ABC首尾相连得到△ABC

∵B∈α,C∈α,b⊥α

∴b⊥BC,即∠ABC=90°

∵a⊥b,即∠BAC=90°

∴在△ABC中,有两个内角为90°,这是不可能的事情。

∴假设不成立,a∥α

推荐阅读

点击查看 高中数学知识点 更多内容