高三网 试题库 作文库 大学库 专业库

当前位置: 高三网 > 高中数学 > 正文

拐点和驻点的区别有哪些

2020-02-05 14:49:37文/叶丹
输入分数,测一测能上的大学
测一测

拐点:二阶导数为零,且三阶导不为零;驻点:一阶导数为零或不存在。区别:可导函数f(x)的极值点【必定】是它的驻点。

拐点和驻点的区别

驻点与拐点区别

驻点仅仅就是指一阶导数等于0的点。拐点是指凹凸性改变的点。

函数的一阶导数为0的点称为函数的驻点,驻点可以划分函数的单调区间。(驻点也称为稳定点,临界点。

拐点在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。若该曲线图形的函数在拐点有二次导数,则二次导数必为零或不存在。

驻点和拐点的区别在驻点处的单调性可能改变,在拐点处单调性也可能发生改变,但凹凸性肯定改变。

拐点和驻点的定义

驻点:一阶导数为0的点。

拐点:函数凹凸性发生变化的点。

极值点:在邻域内为最大值的点。

如何判定驻点:只需要函数在某点一阶可导,且一阶导数值为0。

如何判定拐点:1,若函数二阶可导,某点二阶导数值为零,两端二阶导数值异号。2,若函数三阶可导,则二阶导数为0,三阶导数不为0的点就是拐点。

如何判定极值点:取极值的点 一阶导数为0或导数不存在。1,一阶导为0时,若一阶导两端异号为极值点。2,二阶可导时,一阶导为0,二阶导不为0则为极值点,二阶导大于0极小值,二阶导小于0极大值。

说说关系。

极值点不一定是驻点,驻点不一定是极值点。因为取极值不需要可导,驻点必须可导。

对于可导函数,极值点必定是驻点。

拐点不一定是驻点,例如y=x三次方+x。因为二阶导数某点为0不能判定一阶导数在某点为0。

驻点显然更不一定是拐点,驻点只需要一阶导数为0,而拐点需要二阶可导(此处得网友提醒拐点未必需要可导)。

微信搜索关注公众号:高三网

扫描下方二维码,不要钱的分数线、院校库查询工具打开即用

免费使用新高考志愿填报模板、免费获取一分一段表

扫描二维码 关注高三网公众号

《拐点和驻点的区别有哪些》
立即下载

测一测你能上的大学

广东
物理
历史
化学政治生物地理
    
测一测能上的大学
推荐阅读

点击查看 高中数学 更多内容

验证码错误!

测一测你能上的大学

广东
物理
历史
化学政治生物地理
    
测一测我能上的大学

选择省份

北京
天津
河北
山西
内蒙古
辽宁
吉林
黑龙江
上海
江苏
浙江
安徽
福建
江西
山东
河南
湖北
湖南
广东
广西
海南
重庆
四川
贵州
云南
陕西
甘肃
青海
宁夏
新疆
请填写您的高考信息 ×
考试地区
首选科目
物理
历史
再选科目
化学
政治
生物
地理
预估分数
智能推荐
提示