高三网 试题库 作文库 大学库 专业库

当前位置: 高三网 > 高中数学 > 正文

文科数学选修重要吗 都学什么

2018-04-13 16:29:17文/丁雪竹

有很多的同学是非常想知道,高中文科数学选修重要吗,都学习什么内容,小编整理了相关信息,希望会对大家有所帮助!

文科数学选修重要吗 都学什么

高中数学文科生要学哪几本选修

文科数学选修也是非常重要的。高中数学(文科):必学部分:必修1、必修2、必修3、必修4、必修5、选修1-1、选修1-2;选学部分:选修4-1(几何证明选讲)、选修4-2(矩阵与变换)、选修4-4(坐标系与参数方程)、选修4-5(不等式选讲)

注:高考必学部分为必考题,选学部分为选考题(三选一).

高中数学选修部分占高考多少分

1.集合(必修1)与简易逻辑,复数(选修)。分值在10分左右(一两道选择题,有时达到三道),考查的重点是计算能力,集合多考察交并补运算,简易逻辑多为考查“充分与必要条件”及命题真伪的判别,复数一般考察模及分式运算。

2.函数(必修1指数函数、对数函数)与导数(选修),一般在高考中,至少三个小题一个大压轴题,分值在30分左右。以指数函数、对数函数、及扩展函数函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)以选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。压轴题,文科以三次函数为主,理科以含有ex,lnx的复杂函数为主,以切线问题、极值最值问题、单调性问题、恒成立零点为设置条件,求解范围或证明结论为主。

3立体几何(必修2):分值在22分左右(两小一大),两小题以基本位置关系的判定与体积,内外截球,三视图计算为主,一大题以证明空间线面的位置关系和夹角计算为主,试题的命制载体可能趋向于不规则几何体,但仍以“方便建系”为原则。

4.解析几何(必修2+选修):必修2直线与圆的方程、选修圆锥曲线统称为解析几何,高考对解析几何的考查一般是三个小题一个大题,所占分值约30分。其规律是线性规划、直线与圆各一个小题,涉及圆锥曲线的图形、定义或简单几何性质的问题一个小题,直线与圆锥曲线的综合问题一个大题。

圆锥曲线核心:运算,超越课本结论。

小编推荐:高中文科数学选修学哪几本

5.算法程序框图(必修3):一道选择题,主要以循环结构为主。

6.概率统计(必修3),排列、组合、二项式定理、(选修):分值在22分左右(两小一大),排列组合与二项式定理一般一个小题,大题理科以概率统计、文科以求概率的应用题为主理科考查重点为随机变量的分布列及数学期望,概率计算;文科以等可能事件、互斥事件、相互独立事件的概率求法为主。特别要引起注意是以“正态分布”相关内容为题材,文科卷以“抽样”相关内容为题材设计试题。

7三角函数(必修4):分值在20分左右(两小一大,大题或有或无)。三角函数考题大致为以下几类:一是三角函数的恒等变形,即应用同角变换和诱导公式,两角和差公式,二倍角公式,求三角函数值及化简、证明等问题;二是三角函数的图象和性质,即图像的平移、伸缩变换与对称变换、画图与视图,与单调性、周期性和对称性、最值有关的问题;三是三角形中的三角问题.

高考对这部分内容的命题有如下趋势:⑴降低了对三角变形的要求,加强了对三角函数的图象和性质的考察.⑵多是基础题,难度属中档偏易.⑶强调三角函数的工具性,加强了三角函数与其他知识的综合,如与向量知识、三角形问题、解析几何、立体几何的综合。以三角形为载体,以三角函数为核心,以正余弦公式为主体,考查三角变换及其应用的能力,已成为考试热点。

8向量(必修4):分值在10分左右,一般有一道小题的纯向量题,另外在函数、三角、解析几何与立体几何中均可能结合出题。

9不等式(必修5);选择题多以基本不等式求最值为主,在解答题中中“隐蔽”出现,分值一般在10左右。不等式涉及函数、数列、圆锥曲线等知识的考查。

10.数列(必修5):数列是高中数学的重要内容,题量一般是一个小题,一个大题或有或无(改成小题),有时还有一个与其它知识的综合题。分值在15分左右,文科以应用等差、等比数列的概念、性质求通项公式、前n项和为主;理科以应用Sn或an之间的递推关系求通项、求和、证明有关性质为主。

11选做题一道(选修)

高考文科数学难吗

数学的整体难度较低

据了解到的信息,平时练习的绝大部分知识点这次都考到了,而且试题整体的难度不算大。“数学最难的还是后面两道几何和函数综合试题,其中的几个小问题对绝大部分考生来说都有一定难度。”王安善说。不过老师认为,试题难度简单了,为了增加区分度,今年在做题规范性上很有可能会更加严格。

不过尽管题型简单,并不代表大家都能得高分,因为此时往往很多人会轻敌,一旦粗心大意,就会失分,所以考验的是考生的认真细心程度以及良好的心理素质。

推荐阅读

点击查看 高中数学 更多内容